人工智能(61)–AlphaGo淺析(1)
AlphaGo(阿爾法狗)戰(zhàn)勝了柯潔,人工智能贏了,贏家仍然是人類!
之前介紹過深度強(qiáng)化學(xué)習(xí)DRL,其中一個(gè)最最經(jīng)典的應(yīng)用就是谷歌DeepMind團(tuán)隊(duì)研發(fā)的圍棋程序AlphaGo(阿爾法狗)。AlphaGo的勝利將深度強(qiáng)化學(xué)習(xí)推上新的熱點(diǎn)和高度,成為AI人工智能歷史上一個(gè)新的里程碑。
有必要跟大家一起探討一下AlphaGo(阿爾法狗),了解一下AlphaGo背后神奇的AI力量。
圍棋的程序設(shè)計(jì):
圍棋是一個(gè)完美的、有趣的數(shù)學(xué)問題。
圍棋棋盤是19x19路,所以一共是361個(gè)交叉點(diǎn),每個(gè)交叉點(diǎn)有三種狀態(tài),可以用1表示黑子,-1表示白字,0表示無子,考慮到每個(gè)位置還可能有落子的時(shí)間、這個(gè)位置的氣等其他信息,可以用一個(gè)361 * n維的向量來表示一個(gè)棋盤的狀態(tài)。則把一個(gè)棋盤狀態(tài)向量記為s。
當(dāng)狀態(tài)s下,暫時(shí)不考慮無法落子的地方,可供下一步落子的空間也是361個(gè)。把下一步的落子的行動(dòng)也用361維的向量來表示記為a。
于是,設(shè)計(jì)一個(gè)圍棋人工智能的程序,就轉(zhuǎn)變?yōu)椋喝我饨o定一個(gè)s狀態(tài),尋找最好的應(yīng)對(duì)策略a,讓程序按照這個(gè)策略走,最后獲得棋盤上最大的地盤。
谷歌DeepMind的圍棋程序AlphaGo(阿爾法狗)就是基于這樣思想設(shè)計(jì)的。
AlphaGo概述:
AlphaGo(阿爾法狗)創(chuàng)新性地將深度強(qiáng)化學(xué)習(xí)DRL和蒙特卡羅樹搜索MCTS相結(jié)合, 通過價(jià)值網(wǎng)絡(luò)(value network)評(píng)估局面以減小搜索深度, 利用策略網(wǎng)絡(luò)(policy network)降低搜索寬度, 使搜索效率得到大幅提升, 勝率估算也更加精確。
MCTS必要性:
AlphaGo(阿爾法狗)系統(tǒng)中除了深度強(qiáng)化學(xué)習(xí)DRL外,為什么還需要蒙特卡羅樹搜索?
圍棋棋面總共有19 * 19 = 361個(gè)落子位置。假如計(jì)算機(jī)有足夠的計(jì)算能力,理論上來說,可以窮舉黑白雙方所有可能的落子位置,找到最優(yōu)或次優(yōu)落子策略。如果窮舉黑白雙方所有可能的落子位置,各種組合的總數(shù),大約是 250^150 數(shù)量級(jí),即圍棋的計(jì)算復(fù)雜度約為250的150次方。假如采用傳統(tǒng)的暴力搜索方式(遍歷搜索方式),用當(dāng)今世界最強(qiáng)大云計(jì)算系統(tǒng),算幾十年也算不完。按照現(xiàn)有的計(jì)算能力是遠(yuǎn)遠(yuǎn)無法解決圍棋問題的。早期計(jì)算機(jī)圍棋軟件通過專家系統(tǒng)和模糊匹配縮小搜索空間, 減輕計(jì)算強(qiáng)度, 但受限于計(jì)算資源和硬件能力, 實(shí)際效果并不理想。
但是到了2006年,蒙特卡羅樹搜索的應(yīng)用標(biāo)志著計(jì)算機(jī)圍棋進(jìn)入了嶄新階段。
AlphaGo網(wǎng)絡(luò)結(jié)構(gòu):
網(wǎng)絡(luò)結(jié)構(gòu)如下圖所示:
AlphaGo系統(tǒng)組成:
AlphaGo(阿爾法狗)系統(tǒng)主要由幾個(gè)部分組成:
1.策略網(wǎng)絡(luò)(Policy Network):給定當(dāng)前圍棋局面,預(yù)測(cè)/采樣下一步的走棋。
2.快速走子(Fast rollout):目標(biāo)和策略網(wǎng)絡(luò)一樣,只不過圍棋有時(shí)間限制,需要在規(guī)定時(shí)間內(nèi)適當(dāng)犧牲走棋質(zhì)量情況下,快速落子,速度要比策略網(wǎng)絡(luò)要快1000倍。
3.價(jià)值網(wǎng)絡(luò)(Value Network):給定當(dāng)前圍棋局面,估計(jì)是白勝還是黑勝。
4.蒙特卡羅樹搜索(Monte Carlo Tree Search):不窮舉所有組合,找到最優(yōu)或次優(yōu)位置。
把以上這四個(gè)部分結(jié)合起來,形成一個(gè)完整的AlphaGo(阿爾法狗)系統(tǒng)。
蒙特卡洛樹搜索 (MCTS) 是一個(gè)大框架,許多博弈AI都會(huì)采用這個(gè)框架。強(qiáng)化學(xué)習(xí)(RL)是學(xué)習(xí)方法,用來提升AI的實(shí)力。深度學(xué)習(xí)(DL)采用了深度神經(jīng)網(wǎng)絡(luò) (DNN),它是工具,用來擬合圍棋局面評(píng)估函數(shù)和策略函數(shù)的。蒙特卡洛樹搜索 (MCTS) 和強(qiáng)化學(xué)習(xí)RL讓具有自學(xué)能力、并行的圍棋博弈算法成為可能。深度學(xué)習(xí)(DL)讓量化地評(píng)估圍棋局面成為了可能。
小結(jié):
可以說 AlphaGo 最大優(yōu)勢(shì)就是它應(yīng)用了通用算法,而不是僅局限于圍棋領(lǐng)域的算法。AlphaGo勝利證明了像圍棋這樣復(fù)雜的問題,都可以通過先進(jìn)的AI人工智能技術(shù)來解決。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
7月8日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身智能機(jī)器人產(chǎn)業(yè)技術(shù)創(chuàng)新應(yīng)用論壇
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
推薦專題
- 1 AI 眼鏡讓百萬(wàn) APP「集體失業(yè)」?
- 2 豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
- 3 一文看懂視覺語(yǔ)言動(dòng)作模型(VLA)及其應(yīng)用
- 4 “支付+”時(shí)代,支付即生態(tài) | 2025中國(guó)跨境支付十大趨勢(shì)
- 5 中國(guó)最具實(shí)力AI公司TOP10
- 6 特斯拉Robotaxi上路,馬斯克端上畫了十年的餅
- 7 張勇等人退出阿里合伙人
- 8 AI的夏天:第四范式VS云從科技VS地平線機(jī)器人
- 9 深圳跑出40億超級(jí)隱形冠軍:賣機(jī)器人年入6.1億,港股上市
- 10 AI視頻,攪動(dòng)1.5萬(wàn)億市場(chǎng)